RESOLUTION OF THE
RESOURCES AND DEVELOPMENT COMMITTEE $23^{\text {rd }}$ Navajo Nation Council --- Fourth Year, 2018

AN ACTION

RELATING TO RESOURCES AND DEVELOPMENT COMMITTEE; APPROVING THE NAVAJO DIVISION OF TRANSPORTATION 2018 STRATEGIC HIGHWAY SAFETY PLAN

BE IT ENACTED:

SECTION ONE. AUTHORITY

A. Pursuant to 2 N.N.C. $\$ 500$ (C) (6), the Resources and Development Committee has oversight authority over matters including planning and coordination of roads and transportation activities of the Navajo Nation.
B. Pursuant to 2 N.N.C. § 501 (C), the Resources and Development Committee has oversight authority over the Navajo Division of Transportation.

SECTION TWO. FINDINGS

A. The Navajo Division of Transportation and Navajo Department of Highway safety has requested legislation approving the Strategic Highway Safety Plan.
B. The Navajo Division of Transportation and Navajo Department of Highway Safety Strategic Highway Safety Plan is attached hereto as Exhibit A.

SECTION THREE. APPROVAL OF THE NAVAJO DIVISION OF TRANSPORTATION 2018 STRATEGIC HIGHWAY SAFETY PLAN

The Resources and Development Committee of the Navajo Nation Council hereby approves the Navajo Division of Transportation 2018 Strategic Highway Safety Plan, Exhibit A.

CERTIFICATION

I, hereby, certify that the following resolution was duly considered by the Resources and Development Committee of the $23^{\text {ri }}$ Navajo Nation Council at a duly called meeting at Navajo Nation Council Chambers, Window Rock, Navajo Nation (Arizona), at which a quorum was present and that same was passed by a vote of 5 in favor, and 0 opposed, on this 28th. day of November 2018.

Benjamin Bennett, Vice-Chairperson Resources and Development Committee of the 23: Navajo Nation Council

Motion: Honorable Walter Phelps
Second: Honorable Davis Filfred
Vice-Chairperson Benjamin Bennett not voting.

4.8	Distracted Driving..-4-4
4.9	Older Driver ...4-5
4.10	Young Driver ...4-6
4.11	Animals..6-6
4.12	Pedestrians ..4-7
4.13	Secondary Crashes..4-8
4.14	Intersection...4-8
4.15	Work zones ..4-9
4.16	Right of Way Related...4-9
4.17	Head-On..-10
4.18	Overturn / Rollover...4-10
5.0	The 4-E's to Improve Safety...................................... 5-1
5.1	Emergency Medical Service ... 5 -1
5.2	EDUCATION..5-1
5.3	ENFORCEMENT..5-2
5.4	
5.5	Local Area Strategies ...6-6
6.0	Countermeasure information 6-1

Table of Contents

1.0 Introduction ...1-1 7
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
 1.3 Department of Highway Safety.. 1.4 Strategic Highway Safety Plan ..-1-2 1.5 Four E's of Safety.. 1.6 State Emphasis Areas..2 Public Involvement... Crash Data Analyses ...2-1
 3.0 Geographic Critical Focus Areas..................................3-1 Critical Areas.. 3.2 Remaining System Evaluation..-37
.0 Emphasis Areas and Strategies4-1

List of Tables

Table 1-1| Arizona, New Mexico, and Utah State Emphasis Areas............................. 1-2 Table 2-1| Economic Cost of Crashes in Navajo Nation from 1999-2015................. 2-1 Table 5-1 | Stakeholder/Practitioner Identified Strategies
$\begin{array}{r}1-1 \\ .1-3 \\ 1-4 \\ .1-5 \\ .2-1 \\ .2-1 \\ .1 \\ 2-1 \\ .-2 \\ .2-2 \\ 3-2 \\ .3-3 \\ 3-11 \\ 3-12 \\ 3-13 \\ 3-14 \\ 3-15 \\ 3-16 \\ 3-17 \\ \hline 5-3 \\ \hline 5-3 \\ 5-4 \\ 5-5 \\ \hline\end{array}$
course at Phoenix, AZ, in February 2016. The instructor program trains and equips individuals to then teach the program to young drivers. This will assist in efforts to target the age group of 15-29 for specific traffic safety initiatives within Navajo Nation.
Figure 1-1 | Navajo Nation

1.4 STRATEGIC HIGHWAY SAFETY PLAN

This is the compilation of analysis, public involvement, stakeholder, and practitioner interaction. The focus of this Strategic Highway Safety Plan is to identify the needs based on crash data analysis and in order to gain understanding of the nature of crashes within the Navajo Nation region, and identify potential strategies and countermeasures to reduce injury and fatality crashes. Crash data from 1999 to 2015 was examined to develop a high-level summary of total, fatal and serious injury crash trends.

1.5 FOUR E'S OF SAFETY

The four E's of safety define the broad stakeholders who care about safety and are responsible for making roads safe for all users. These stakeholders provide perspective to the SHSP and include the following:
Engineering - Highway design, traffic, maintenance, operations, and planning professionals.
Enforcement - State and local enforcement agencies.
Education - Prevention specialists, communication professionals,
educators, and citizen advocacy groups.
Emergency Medical Services - First responders, paramedics, fire, and rescue.

1.6 STATE EMPHASIS AREAS

Safety funding for Navajo Nation can be received through direct grant source and state safety programs from Arizona, New Mexico, and Utah. Some important differences exist between safety emphasis areas and strategies outlined in individual state SHSP plans that will impact how safety funding can be obtained.
Table 1-1 identifies emphasis areas that are designated in the state SHSP's for Arizona, New Mexico, and Utah. Many of the categories are common between all three states. Speeding/aggressive driving is the top priority amongst all three state safety plans.
Understanding these emphasis areas allows agencies within their respective SHP. used to help implement the strategies outlined in the SHSP. Since each state has different SHSP emphasis areas, it is also important to understand where the
various safety funding programs can be used, with engineering, education,
enforcement and emergency service provider improvements to improve safety conditions.
Table 1-1| Arizona, New Mexico, and Utah State Emphasis Areas

State Emphasis Areas			
	Arizona	New Mexico	Utah
Speeding/Aggressive Driving	X	X	X
Impaired Driving	X	X	X
Distracted Driving	X	X	X
Intersection Crashes		X	X
Motorcycles	X		X
Lane Departure Crashes		X	X
Occupant Protection (Restraints)	X	X	X
Nonmotorized Users (Bike/Ped)	X		X
Public Info/Education		X	X
Age Related	X	X	X
Iraffic Records/ Data Improvements	X	X	
Policy Initiatives	X		
Drowsy Driving			X
Emergency Services Response		X	
Infrastructure and Operations	X		
Native Americans		X	
Heavy Vehicles/Transit	X		
Natural Risks	X		
Special Users		X	
Traffic Incident Management	X		
Interjurisdictional			

STRATEGIC HIGHWAY SAFETY PLAN
Figure 1-2 | ADOT Engineering and Maintenance Districts
ADOT Engineering and Maintenance Districts with State Milepost System cen cen
息

find

Figure 1-3 | UDOT Engineering Districts

Navajo Nation's northern section lies within UDOT's District 4 area, as shown in
Figure 1-3.
Figure 1-3.

UTAH

Utah, similarly to Arizona, focuses on the goal of zero fatalities in the 2016 SHSP. The Utah Executive Committee which implements the SHSP is comprised of the Utah Department of Transportation (UDOT), the Utah Department of Public Safety (UDPS), the Utah Department of Health (UDOH) as well as U.S. Department of Transportation groups such as the Federal Highway Administration (FHWA) and the Federal Motor Carrier Safety Administration (FMCSA). In addition, Utah focuses on the four E's of safety plus a fifth "E" which represents "Everyone" and the safety accountability of the individual. As established in the SHSP, Utah has adopted the American Association of State Highway and Transportation officials' (AASHTO) mission to reduce fatalities by 50% by 2030 , or a 2.5% decrease per year. Data is sourced from the UPDS 2006 to 2015 injury and fatal crash data. The SHSP outlines leaders responsible for management of each of the 12 emphasis safety areas. The SHSP also calls out specific initiatives for each emphasis area such as the "Sleep Smart. Drive Smart." campaign for the drowsy driving emphasis area or the "Drive sober or get pulled over" campaign led by the Utah Highway Patrol to prevent impaired driving. In addition to the twelve safety areas, Utah has established eight Continuing Safety areas that represent programs currently underway within safety agencies and five Special Safety areas that represent opportunities for the safety community to enhance processes.

Navajo Nation lies within two NMDOT Districts (Districts 5 and 6) as shown in Figure 1-4.
One particular strategy outlined from the New Mexico Comprehensive Transportation Safety Plan is to "Provide Crash Data Analysis Tools, Training Opportunities, and Technical Assistance to Native Americans", whereas the Plan
 organizations is inadequate and that data is often collected and distributed without clear understanding of its purpose. Some tribes simply do not have the technological resources to effectively analyze and/or disseminate this data; therefore NMDOT proposes to provide crash data tools, training, and technical assistance to tribes that would result in better transportation safety planning within tribal areas. enforcement, education, health, and media agencies and organizations to
develop and carry out the twelve emphasis areas. Data is sourced from the fed FARS and the New Mexico crash reporting system. Past safety performance of emphasis areas is analyzed by TSD partners and can be used to establish new emphasis areas in future SHSP and HSIP safety goals.

 1.65% in 2016. The TSD partners with various state, local and tribal law
The Traffic Safety Division (TSD) of the New Mexico Department of Transportation (NMDOT) has the prime responsibility for managing safety programs created to
 in the development of the SHSP which outlines twelve emphasis areas within New Mexico and strategies to carry out performance measures that aim at reducing fatal and injury crashes. New Mexico's first HSIP goal is to limit the expected develop and carry out the twelve emphasis areas. Data is sourced from the feder emphasis areas in future SHSP and HSIP safety goals.

1.7 PUBLICINVOLVEMENT

The public involvement strategy used to develop the NNSHSP was to work with established safety practitioner groups that have current relationships and processes relating to the 4-E's. Additionally, the project team went out to the communities that exhibited the highest crash occurrences so to elevate the importance of locally driven crash reduction strategies. Local meetings were held in Window Rock, Shiprock, Newcomb, Kayenta, Tuba City, Chinle and Ganado. Broader group meetings were held at the NDOT Headquarters complex in Tse Bonito, New Mexico.

6AMADO
2038 Mavijo Mation
Strategk Mighway Sotey, Plan

$+$

Figure 1-4 | NMDOT Engineering Districts

2.0 CRASH DATA ANALYSES

STRATEGIC HIGHWAY SAFETY PLAN

$$
-\frac{\tau}{i n}
$$

2018 NAVAJO NATION
STRATEGIC H1GHWAY SAFETY PLAN
Figure 2-5 | 1999-2015 All Crashes Fishnet Analysis

2.1 ECONOMIC COST OF CRASHES

The economy is significantly impacted by the total cost of motor vehicle injuries and the National Safety Council concurs. Wage, productivity losses, medical
expenses, administrative expenses, motor vehicle damage, and employers'
uninsured costs are just a few of the calculable costs associated with motor
vehicle collisions. In order to calculate cost per injury crash for Navajo Nation, the average economic cost per incident was based on the National Safety Council crash costs for 1999-2015. For example, in 2015 the estimated national average cost per incident was as follows:

> Fatality = \$1,542,240

Incapacitating Injury $=\$ 90,270$
No-lncapacitin 2
Possible Injury $=\$ 21,420$

Property Damage Only = \$11,526

Table 2-1 provides the estimated cost by state of crashes within Navajo Nation from 1999-2015. Injury crashes are not identified as incapacitating, non-
incapacitating, or possible injury within the NDOT crash data. In order to give a reasonable estimate of the injury crashes, the proportion of incapacitating, nonincapacitating, and possible injury crashes was used from the Arizona Crash Fact
sheets. The total economic cost of crashes in Navajo Nation from 1999-2015 totaled approximately $\$ 1.5$ billion.

Table 2-1 | Economic Cost of Crashes in Navajo Nation from 1999-2015

	ARIZONA	NEW MExico	UTAM	total
K-Fatal Crash	812,800,120	5516,867,760	S27,840,840	51,357,50, 72
A- Incopacitatine miury Crash	558,104,221	529,134,077	\$1,71, 599	\$88,955,983
B- Mon-Incapactitating Injury Crash	\$6,515,264	53,271,490	5188,557	\$5,975,310
c- Poosible injury Crash	\$2,008,703	S1.024,493	559,508	[3,102,709
O-Property Damage only	541,886,760	533,83,828	\$2,107,78	57,87,376
total	\| $5221,325,068$	[5se, 181,683	[331,914,292	\$1,537,421:008

Figure 3-1 reveals the sev the state and federal level. Moreover, each area was looked at independently as to comprehend unique or common crash factors resulting in high densities of crashes.

> Cause and collision types describe the nature of each crash incident, therefore the three most prevalent cause and collision types are stated for each emphasis areas which helps identify specific issues.

3.0 GEOGRAPHIC CRITICAL FOCUS

AREAS

Between 1999-2015, crash data was obtained through NDOT and included Arizona, Utah, and New Mexico state highway crash data. The total number of documented crashes - which included fatal, injury and property damage onlythat occurred within Navajo Nation was 17,717 over the course of 17 years. 134 of the total crashes, did not have a year associated with the data and were omitted for this analysis. Therefore, the total crash count used for this analysis was 17,583 crashes.

[^0]
3.1 CRITICAL AREAS

The crash data was queried to display locations of serious and fatal injury crashes. Geospatial analysis was used to understand crash density per square mile, which resulted in seven distinct areas exhibiting the highest density (Figure 4-1). These seven locations represent the following characteristics, even though they
comprise only 4.1% of Navajo Nation road mileage:

- Where crashes have a Cause or Collision type code $(17,17)$ of pedestrian
involved (Cause-17, Collision-17), 70% of crashes comprised of this type;
Where crashes have a Junction type crash code of 2 (intersection related crashes), 63% of crashes comprised of this Junction type;

Where crashes have a Cause type of 3 (Failed to Yield Right-of-Way), 79\% of crashes comprised of this type; and

Where crashes have a Cause or Collision type code $(13,13)$ of wildlife or animal involved, 37% comprised of these crash types.

The seven critical zone areas include:

Shiprock Area
Figure 3-1 | High Crash Density Analysis Areas

Shiprock Area
The Shiprock Area, which comprises 9\% of all fatal/injury crashes in Navajo Nation from 1999-2015, is the number one priority for safety. Figure 3-2 illustrates the
concentration of crashes, which primarily occurred at the intersection of Highway 504 and Highway 491 and the intersection of Highway 491 and Highway 64. Both intersections are currently regulated by traffic signals. The highest crash factors in this critical zone include the following:
 Driver Inattention Failed to Yield to ROW

The highest collision factors include the following:

- Rear Ended

- Sideswipe

From 1999 to 2015, 648 severe crashes occurred within this area. Of those approximately 93% were crashes with injuries and 7\% were crashes with fatalities.

In comparison with other areas, Shiprock has the highest number of injury and fatal pedestrian crashes at 21%.

Appendix A contains the presentation provided for the Shiprock area, and the detailed summary of crash data.
Figure 3-2 | Shiprock Area Fatal and Injury Crashes

Window Rock Area
Window Rock comprises 9% of all fatal/injury crashes within Navajo Nation from 1999-2015. Figure 3-3 illustrates the concentration of crashes, which primarily
 as Indian Route 12. The highest crash factors in this critical zone include the following:

- Under the Influence of Alcohol - Failed to Yield to ROW Driver Inattention
The highest collision factors include the
following:

- Rear Ended

- Overturn/Rollover
- Hit Side of Vehicle \& Hit Animal
From 1999 to 2015, 645 severe crashes occurred within this area. Of those approximately 90% were crashes with injuries and the remaining 10\% were crashes with fatalities.
Appendix B contains the presentation
provided for the Window Rock area, and the detailed summary of crash data

$0 \rightarrow 1-$
Figure 3-5 | Kayenta Area Fatal and Injury Crashes

Figure 3-6 | Chinle Area Fatal and Injury Crashes

Figure 3-7 | Ganado Area Fatal and Injury Crashes

Newcomb Area
Figure 3-8 | Newcomb Area Fatal and Injury Crashes

STRATEGIC HIGHWAY SAFETY PLAN
3.2 REMAINING SYSTEM EVALUATION High-level crash analysis was conducted to uncover density of fatal and injury crashes. However, other areas were also examined and analyzed. The seven Critical Areas
mentioned earlier were looked at through cause and
collision characteristics at the local level, while other crash data were analyzed at the Nation's regional level as these crashes are not spatially dense. A geoprocessing tool called Fishnet Analysis uses spatial union to determine the
number of crashes occurring in an approximate one-mile area.
The remaining system was evaluated with the following crash conditions:

隹
fige 3-9lustrates the maing syster crashes.
Figure $3-9$ illustrates the remaining system crashes.

Figure 3-9 | Remaining System Crash Summary

4.1.2 GoAL

Improve data availability and completeness to allow for a better and broader understanding of the crash-related safety problems within Navajo Nation.
4.1.3 STATES

4.1.4 Strategies to Achieve Goal

EMS

$$
\begin{aligned}
& \text { Arizona } \\
& \text { New Mex }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Arlzona } \\
& \text { New Mexico }
\end{aligned}
$$

Utah ENGINEERING

- Identify critical pieces of crash data.
- Combine crash data with roadway features and traffic volume.
forms/systems. forms/systems.
Share crash data
ENFORCEMENT
- Use electronic crash data collection such as the CODY or TraCS systems for instant data uploading and use by interested agency partners. Collect critical pieces of crash data in all states.

Train Officers on what data is important and why it is important. Develop quality control and quality assurance measures.

Connect hospital records with crash records.

4.0 EMPHASIS AREAS AND STRATEGIES

Safety emphasis areas establish the focus for the NNSHSP to achieve
transportation safety goals. Specifically, emphasis areas that offer the greatest potential for reducing fatalities and injuries are used to track progress and direct projects and programs for implementation.

A data-driven and coordinated stakeholder process was used to determine the appropriate safety emphasis areas.

4.1 DATA IMPROVEMENT

Data improvement is key to increasing the knowledge and understanding of the safety problems within Navajo Nation.

As Navajo Nation falls within three states, the crash data is not always consistent across the board. Creating a common system to use across Navajo Nation and training the officers on the system will help to give a more complete picture of what is occurring on Navajo Nation's roadways. Additionally, implementing a system-wide electronic on-vehicle crash reporting system that would synchronize with a live database and ultimately relate seamlessly with state DOT crash
reporting systems would assist Navajo Nation in obtaining state-sponsored safety grants.

A migration to using KABCO injury classification scale on crash reporting forms will allow for more information to be obtained to help with the understanding of the most severe and fatal crashes.

Other areas that will lead to better crash data include breaking crashes down by KABCO scale. The KABCO scale is widely used and provides information on the severity of the crashes being seen. This will ultimately help to focus the crash mitigation techniques.

4.1.1 Purpose

Improving the quality of data allows for a better assessment and diagnosis of safety problems. Improving the data also assists in the use and completeness of required data items for grant applications and safety reporting.
STRATEGIC HIGHWAY SAFETY PLAN

4.3 ALCOHOL AND DRUG RELATED
 Alcohol and Drug related crashes include under the influence of drugs, under the influence of alcohol, and unknown / sleeping at the wheel

Alcohol and Drug related crashes are identified within the 2017-2019 Navajo DOT SHSP, the analysis performed for this SHSP, AZ SHSP, NM SHSP, and UT SHSP.

Alcohol and drug related crashes showed up consistently as one of the top contributing factors over the analysis years and areas. There are concentrations of
 and Drug related crashes make up 25.8% of all fatal and injury crashes in Navajo Nation with 81.12% being fatal and 18.88% being injury.

Countermeasures tend to be in the EMS, Enforcement, and Education areas.

Prevent impaired driving.

4.3.2 GOAL

4.2 RESTRAINT USAGE

Restraint usage is an emphasis area. Restraint usage is identified within the Fatality Analysis Reporting System (FARS) data. This data indicates that 50\% of the fatal crashes did not involve occupant protection.

A consistent tracking of this information will help to enable countermeasure development and project implementation. Primary countermeasures include enforcement and education.

4.2.1 PuRPOSE

 device usage through education and enforcement.

4.2.2 GOAL

Reducing fatalities and severe injuries.

4.2.3 States

Arizona, New Mexico, Utah

4.2.4 Strategies to Achieve Goal

 ENGINEERING- Collect data on safety device usage.

Arizona, New Mexico, Utah
4.3.3 STATES
Arizona, New Mexico, Utah
4.3.4 STRATEGIES TO ACHIEVE GOAL

EDUCATION

- Implement mass media campaigns in conjunction with patrols and
checkpoints.
Partner with Navajo enterprises for billboard and outreach campaigns Partner with IHS for marketing programs.

> ENFORCEMENT - Lower legal BAC levels for repeat offenders.

4.5 HEAVY VEHICLES

Navajo Nation identifies heavy vehicles as an emphasis area but it does not show up in our analysis as there is inconsistent data on this factor.
Heavy vehicles are starting to be tracked and need to be consistently tracked. Data right now does not allow for the tracking of this emphasis area. After data is able to be tracked different countermeasures can be presented to help reduce the number of crashes involving heavy vehicles. These countermeasures will primarily be with enforcement and engineering.

> 4.5.1 PURPOSE
To reduce the number of heavy vehicle involved crashes through education, engineering, and enforcement.

 \subsection*{4.5.2 GOAL}

4.5.3 STATES

4.5.4 Strategies to Achieve Goal
ENGINEERING

- Collect data to track the number of heavy vehicle involved crashes.
- Add passing lanes.

[^1]4.4 INTERJURISDICTIONAL

Interjurisdictional was identified in the previous SHSP as an emphasis area to increase coordination among the different agencies. The Arizona SHSP, NM SHSP, and Utah SHSP also include interjurisdictional as an emphasis area.

4.4.1 Purpose

To collaborate with other agencies to provide complete crash data.

4.4.2 GOAL

Building the crash dataset through collaboration with other agencies.
4.4.3 STATES
4.4.4 Strategies to Achieve Goal

ENGINEERING

- Coordinate with states and local jurisdictions to refine and share crash
data.
EDUCATION
- Train local law enforcement on the importance of crash data.

4.7 SPEEDING AND AGGRESSIVE DRIVING

Speeding and aggressive driving shows up in the data as well as is identified in the existing NN SHSP, AZ SHSP, NM SHSP, and the Utah SHSP.
Speeding related crashes make up 15.7% of all fatal and injury crashes in Navajo Nation with 87.89% being injury and 12.11% being fatal. Speeding related crashes are one of the most common crash factors.
Countermeasures for speeding and aggressive driving primarily exist within Enforcement and Education.

> 4.7.1 PURPOSE
To reduce the number of crashes due to speeding through education,
engineering, and enforcement.
4.7.2 GOAL

Reducing fatalties and severe injuries caused by speeding and aggressive driving.
4.7.3 STATES
Arizona, New Mexico, Utah
4.7.4 STRATEGIES TO ACHIEVE GOAL
ENGINEERING

- Install mobile and stationary speed cameras.
EDUCATION
- Educate young drivers on the danger of speeding and aggressive driving.
ENFORCEMENT
- Install mobile and stationary speed cameras.
- Perform speed related saturation patrols.

[^2]
4.6 WEATHER

 Weather related crashes show up in both the previous SHSP as well as within the data. The most common crashes that are related to weather include snow, wet weather, and dust / wind. Snow related crashes make up 7.0% of all fatal and injury crashes in Navajo Nation with 94.23% being injury and 5.77% being fatal. These are concentrated in the northern region of Navajo Nation.Wet Road related crashes make up 3.0\% of all fatal and injury crashes in Navajo Nation with 87.17% being injury and 12.83% being fatal. There are instances where these are concentrated at horizontal curves. Dust / Wind related crashes make up 1.3% of all fatal and injury crashes in Navajo Nation with 86.46% being fatal and 13.54% being injury. Dust / Wind related crash locations.

4.6.1 Purpose

To reduce the number of weather related crashes through education,
engineering, and enforcement.
4.6.2 GOAL

Reducing fatalities and severe injuries caused by weather related events.

4.6.3 STATES

Arizona

4.6.4 Strategies to Achieve Goal

Holistic Agriculture

- Educate the traveling public on the dangers of weather and driving.
- Educate locals on Holistic Agriculture to reduce the number of dust related crashes.

ENFORCEMENT
erable users. When involved in crashes, they tend to sustain more severe injuries. Both the previous version of the SHSP and the analysis ndicate Older Drivers should be an emphasis area. Older driver crashes have been fairly consistent over the last 10 years but there does
Older Driver related crashes make up 3.2\% of all fatal and injury crashes in Navajo Nation with 88.33% being injury and 13.97% being fatal.
Countermeasures to decrease the number of older driver involved crashes are primarily within Engineering, Enforcement، Education, and EMS.
4.9.1 PURPOSE
To reduce the number of older driver involved crashes through engineering, education, enforcement, and EMS efforts.
4.9.2 GOAL
Reducing fatalities involving older drivers.
4.9.3 STATES
Arizona, New Mexico, Utah
4.9.4 STRATEGIES TO ACHIEVE GOAL
ENGINEERING
 (shoulders, rumble strips, striping, larger signs and sign lettering).
EDUCATION

- Hold Carfit programs.
- Require driving retesting.
ENFORCEMENT
- Implement and enforce driver
- Implement and enforce driving restrictions.

4.11 ANIMALS

Crashes with animals tend to be less severe as most animals hit are much smaller

 along a few different routes.
Animal related crashes make up 9.1% of all fatal and injury crashes in Navajo Nation with 97.81% being injury and 2.19% being fatal.
Primary countermeasures for animals involves engineering.

To reduce the number of crashes with animals through engineering and education.

4.11.2 GoAL

Reducing fatalities involving animals.

- Work with local DNR to determine what Animal Crashes.

EDUCATION

- Educate drivers on the prevalence of animals.
4.11.1 PURPOSE

4.10 YOUNG DRIVER

Young drivers are known to be overrepresented within data and this trend showed up in the current Navajo Nation data.
Young Driver related crashes make up 9.0\% of all fatal and injury crashes in Navajo Nation with 86.03% being injury and 13.97% being fatal.
Young driver crash countermeasures include Enforcement, Engineering,
Education, and EMS.
4.10.1 Purpose
To reduce the number of young driver involved crashes through engineering, education, enforcement, and EMS.

4.10.2 GOAL

Reducing fatalities involving young drivers.

4.10.3 States

Arizona, New Mexico, Utah
4.10.4 Strategies to Achieve Goal
EnGINEERING

- Install rumble stripes.
- Install safety edge.
- Install paved shoulders.
EDUCATION
- Think First program.
- Implement GDL with restrictions.
ENFORCEMENT
- Enforce GDL restrictions.

4.12 PEDESTRIANS

Pedestrians have become a focus for the federal government as well as many
falls within, the previous SHSP, and in the current data set. The pedestrian crashes occur mainly within the critical areas.
Pedestrian related crashes make up 2.9\% of all fatal and injury crashes in Navajo Nation with 43.7% being injury and 56.3% being fatal. Pedestrian crashes have
been fairly consistent for the last 10 years with little reduction or gain in the number of crashes.
Pedestrian countermeasures include enforcement, engineering, and education.

4.12.1 PURPOSE

To reduce the number of crashes with pedestrians through engineering, education, enforcement, and EMS.

4.12.2 GOAL

Reducing fatalities and injuries involving pedestrians.

4.12.3 STATES

Arizona, New Mexico, Utah

4.12.4 Strategies to Achieve Goal

 ENGINEERING- Install sidewalks or paths in populated areas on roads and bridges with higher volumes and/or higher speeds. Install paved shoulders on low volume roads.
Install warning and traffic control signals.
Install crosswalks.
Install roadway and/or pedestrian-level lighting.
Change signal phasing to restrict permissive lefts when pedestrians are present.
Implement passive pedestrian detection at intersections. Provide refuge areas for wide crossing areas.
- Reduce pedestrian crossing distances.
strategic hqghway safety plan
4.13 SECONDARY CRASHES

Secondary crashes are identified as a focus area in the AZ SHSP it was not included in the data analysis due to lack of data.

Adding a field to the crash form to allow for tracking of these types of crashes will aid in the understanding of the problem which will allow for countermeasures to be developed. Most countermeasures related to this emphasis area are related to EMS, enforcement, and engineering.

4.13.1 PURPOSE

To reduce the number of secondary crashes through enforcement, EMS, and engineering.

4.13.2 GOAL

Reducing fatalities and serious injuries as a result of secondary crashes.

4.13.3 States

Arizona

4.13.4 Strategies to Achieve Goal

 ENGINEERING- Utilize advance warning systems to let drivers know there is an upcoming slowdown.

EDUCATION

- Create media campaigns to advance slower and more alert driving behaviors near crashes. ENFORCEMENT
- Reduce traffic backups due to crashes.

4.14 INTERSECTION

Intersection crashes are one of the highest areas within the Navajo Nation with 17.4% of crashes occurring at intersections. Navajo Nation has a range of
intersection types including uncontrolled, 2 -way stop controlled, 4 -way stop controlled, roundabouts, and signalized intersections. The data indicates failure to yield right-of-way as one of the top contributing circumstances.

Intersection related crashes make up 17.4\% of all fatal and injury crashes in Navajo Nation with 92.56% being injury and 7.44% being fatal. Intersection crash
countermeasures typically include engineering, enforcement, and education.

4.14.1 PURPOSE

To reduce the number of crashes at intersections through engineering, education, and enforcement.
4.14.2 GOAL

Reducing fatalities and serious injuries at intersections.
4.14.3 STATES

Arizona
4.14.4 Strategies to Achieve Goal

ENGINEERING
Install red light running cameras or blue lights.
Install Flashing Yellow Arrows.
Add Reflective Backplates.
Add STOP or YYELD Signs to uncontrolled intersections.

- Convert / Consider alternative intersection designs such as roundabouts. EDUCATION
- Educate drivers on new types of intersections and intersection features. ENFORCEMENT
- Enforce red light running violations.

4.16 RIGHT OF WAY RELATED

Failure to yield right of way was one of the most prevalent crash types.
Right of Way related crashes make up 12.9% of all fatal and injury crashes in
Navajo Nation with 5.27% being fatal and 94.73% being injury. Further analysis of
these crashes showed a majority of them occurred while the vehicle was making a
left turn maneuver. Right of way related crashes are predominately at
intersections as such there are engineering, enforcement, and education
countermeasures that can be used to mitigate the likelihood of a crash.
4.16.1 PURPOSE
To reduce the number of crashes occurring due to failure to yield right of way
through engineering, enforcement, and education.

4.16.2 GOAL

Reducing fatalities and serious injuries occurring due to failure to yield right of way.
4.16.3 STATES
None
4.16.4 STRATEGIES TO ACHIEVE GOAL
ENGINEERING

- Install STOP or YIELD signs at uncontrolled intersections that warrant the
signs.
- Install Flashing Yellow Arrow.
- Install Red Light Running Cameras or Blue Lights.
- Change intersections to roundabouts or other forms of intersections.
EDUCATION
- Create media campaigns explaining the rule of right of way.
- Think First Campaigns.
ENFORCEMENT
- Utilized blue lights or red light running cameras to help enforce right of
way.
an emphasis area in the previous SHSP. As there
 seen as an important topic to keep track of.

Crash data in work zones is limited and should be expanded to include information on this type of crash. Once data is gathered appropriate countermeasures can be applied. Countermeasures for this type is usually a combination of enforcement, education, and engineering.

4.15.1 PuRPOSE

 enforcement, and educations.

4.15.2 GOAL

Reducing fatalities and serious injuries occurring in work zones.
4.15.3 StATES

Arizona
4.15.4 Strategies to Achieve Goal

ENGINEERING

- Urack clean up time and backups of crashes. slowdown.

Utilize

- Check work zones for MUTCD compliance on a regular basis.

EDUCATION

- Run media campaigns on work zone safety. ENFORCEMENT
- Track clean up time and backups of crashes.
- Enforce reduced speed limits in work zones.

4.15 WORK ZONES

4.18 OVERTURN / ROLLOVER

Overturn / Rollover crashes are predominately found in rural areas. The data shows this is the case in Navajo as well. These are typically associated with speeding as well. These are primarily found not in the critical areas.
Overturn / Rollover related crashes make up 7.4\% of all crashes in Navajo Nation with 16.5% being injury and 6.4% being fatal. Overturn / rollover crashes mainly require engineering countermeasures.
4.18.1 PURPOSE
To reduce the number of overturn / rollover crashes through engineering, enforcement, and education.

> 4.18.2 GOAL
Reducing fatalities and serious injuries occurring in overturn / rollover type crashes.
4.18.3 STATES
None
ENGINEERING
4.18.4 Strategies to Achieve Goal

- Install chevrons and curve warning signs
Install paved shoulders
Install painted edge lines
Install safety edge
- Install centerline rumble strips and edge line rumble strips

EDUCATION

- Educate on importance of safety devices

ENFORCEMENT

4.17 HEAD-ON

Head-on crashes were identified as a main crash type through the analysis of data.

Head-On related crashes make up 7.4\% of all crashes in Navajo Nation with 1.6\% being injury and 5.0% being fatal.

Head-on crashes can occur at intersections or non-intersections. Depending on the location there are different types of countermeasures. These countermeasures fall typically within engineering but there are some in enforcement as well.

To reduce the number of crashes occurring due to head-on collisions through engineering, enforcement, and education.

4.17.2 GOAL

Reducing fatalities and serious injuries occurring due to head-on crashes.

4.17.3 States

4.17.4 Strategies to Achieve Goal

ENGINEERING
Install centerline rumbles.
Protected Left Turns.
Install Centerlines.

- Install left-turn striping through intersections.

EDUCATION

- Run media campaigns on distracted driving, driving while intoxicated,
driving while tired.
ENFORCEMENT
- Enforce No Passing Zones.

5.0 THE 4-E'S TO IMPROVE SAFETY

Emergency Medical Service is one of eight departments within 5.1 EMERGENCY MEDICAL SERVICE the Navajo Division of Public Safety. The operations of the Navajo Nation

Emergency Medical Service are carried out by the Indian Health Service hospitals or clinics that are managed by the Emergency Medical Service (EMS).

5.1.1 Indian Health Service

The Indian Health Service (IHS) is an agency within the Department of Health and Human Services. IHS is the principal federal health provider to American Indians as well as Alaska Natives. Within Navajo Nation there are various hospitals and health centers that provide service to the surrounding area.

5.1.2 COUNTERMEASURES

Alcohol and Drug Involved

 at risk individuals for driving impaired.

5.2 EDUCATION

5.2.1 Navajo nation Department of Highway Safety

Navajo Nation Department of Highway Safety helps facilitate the dissemination of
information for educating the public in relation to traffic risks.

5.2.2 Legislative Needs

The Navajo Nation office of the President and Vice President, and the Chief Justice, should be informed on the issues related to the contributing factors relating to traffic safety/crashes. This will allow the President and Vice President to assess the needs for changing legislation related to enforcement and strengthen the laws
related to the justice system and legislative matters.

5.2.3 COUNTERMEASURES

Education countermeasures generally will be able to be applied to all areas within Navajo Nation due to the similarity in the prevalence of the main contributing factors that can be influenced by education related countermeasures. Presented below are the contributing factor with educational strategies.

Young People (18-24)

Young drivers can benefit from many proven educational strategies including mass media campaigns, targeted campaigns at schools, seatbelt campaigns, and Think First campaigns.

Older Adults

 duls can benefit from the foll campaigns, driver testing, and CarFIT
Pedestrian Involved

There have been many programs that address pedestrians. One of the main programs involves educating pedestrians on how to be more conspicuous,
educating children, educating drivers on the risks and rights of pedestrians.

Right of Way Related

Mass media campaigns on right of way related crashes may help reduce the number of crashes related to this type of crash.

ALCOHOL AND DRUG RELATED CRASHES
Mass Media Campaigns in addition to enforcement efforts are effective ways at using education to reduce the number of Alcohol and Drug related crashes.

Driver inattention
Mass media campaigns are the most common way to educate the public on the risk of distracted driving.

Enforcement plays a vital role in reducing the number of injury and fatal crashes.

5.3.1 Navajo Nation Police Department

The Navajo Nation Law Enforcement is comprised of 7 districts who enforce the traffic laws on Navajo Nation. As Navajo Nation spans three different states, the consistency across them is one of the key factors in being able to use the crash data to support enforcement activities.

5.3.2 COUNTERMEASURES

Enforcement countermeasures, used in conjunction with educational
countermeasures, allow for the number of fatal and injury crashes to be reduced. Presented below are different strategies identified to help reduce the number of crashes that can be applied to the majority of the areas.

Intersection Related Crashes

Intersection related crashes are one of the most prevalent types of crashes occurring in Navajo Nation. To help reduce the number of crashes, the following countermeasures can be used: Red Light Running Cameras, Blue Lights, prohibit stopping in crosswalk, and prohibit right turn on red.

Non-intersection Related Crashes

Non-intersection related crashes incorporate many other factors and the following sections will outline different ways to reduce crashes not within intersections.

Speeding
Enforcement of speeding either through intersections or on a stretch of roadway will lead to a decrease in the number of crashes that are speeding involved. One way to help enforce the speed limits is to use either stationary or mobile speed enforcement.

Right of Way Related
To enforce the right of way related crashes, a use of red light running cameras or blue lights can be used.

5.3 ENFORCEMENT

Alcohol and Drug Related

Saturation Patrols, checkpoints, lower BAC levels for repeat offenders, lower BAC levels for all drivers help to reduce the risk of intoxicated driving crashes.

Driver Inattention

Saturation patrols for texting and driving laws can help reduce the number of distracted driving crashes when used alongside an educational campaign.

5.4 ENGINEERING

The Navajo Nation Division of Transportation houses the engineering arm of
Navajo Nation's roads. The Division of Transportation is responsible for the
development, operations and maintenance of all of Navajo Nation's owned and maintained roadways.

> 5.4.1 COUNTERMEASURES

Engineering countermeasures can be either site specific (spot) or systemic and range in cost and difficulty of implementation. A combination of these are presented below for each of the crash types.

Intersection Related Crashes

High severity signalized intersection crashes tend to include angle, left turn, and head on crashes. The crash data shows that at these intersections failure to yield right of way was also selected.

[^3]STRATEGIC HIGHWAT SAFETY PLAN

countermeasures are increased lettering on signing, centerline and edge line rumble stripes, and protected signal left turn phasing.

Figure 5-2 | Edge line Rumble Stripes
Pedestrian Involved
Many of the pedestrian invol
sidewalks.
Many of the pedestrian involved crashes occur near roadways that do not have
Source: httos://safety.fhwo.dot.oov/orovencountermeasures/fhwa sa 12 .008.cfm
SpEEDING
Depending on the roadway classification there are various engineering methods to reduce speeding.

Chicanes can be used in areas where low speeds are desired such as neighborhoods or downtowns.

[^4]Installation of post delineators can help if installed on the STOP or YIELD sign post. Post delineators can also be installed on other posts to provide a landmark for people to judge the distances by.

Red Light Running cameras reduce the number of serious and fatal intersection crashes when there is a problem with people disregarding the traffic signal. It will however, increase the number of rear-ends.

An alternative to Red Light Running Cameras are Blue Lights. The Blue Light is
 light is on, if it is green, the blue light is dark. This allows enforcement to sit on the receiving side of the intersection and catch a red light runner without having to run a red light themselves.

Change intersection signal head from dog house $/ 3$ section green ball for permissive left turns to Flashing Yellow Arrow (FYA) configuration.

Change intersection phasing from permissive left to protected left. This eliminates the conflict of a left turning vehicle and a thru vehicle. Change from a STOP controlled intersection or Signal controlled intersection to a roundabout. Provided the roundabout provides the necessary capacity, roundabouts eliminate 24 conflict points and reduce the number of fatal and serious injury crashes.

Driver Inattention

Transverse Rumbles call attention to an upcoming STOP controlled intersection.
Rumbles Stripes are typically used where many run off the road crashes occur. They alert the driver that the vehicle is exiting the travelway through auditory and tactile queues.

[^5]Transverse Rumbles can be used to call attention to a lowering of speed limits by providing sensory cues to the driver.

Figure 5-3 | Transverse Rumble Strips Source: https://safety.fhwa.dot.gov/hsip/hrrr/manual/sec45.cfm Automated Speed Enforcement enforces the speed limit through cameras. This is particularly useful to help with enforcing speeds where there are few places where officers can sit to catch / pullover speeders.

Mobile Speed Cameras enforce speed limits through cameras that can be moved to different areas.

Install Changeable speed warning signs. Installation of changeable speed warning signs calls attention to the speed that a vehicle is traveling.

Install dynamic speed feedback. The dynamic speed feedback provides a visual cue to indicate the driver should slow down. These are typically used near curves where people fail to navigate it correctly.

Right of Way Related
Install STOP or YIELD Signs. Installation of traffic control devices help to inform the traveling public of what action should be taken at an intersection.

Increasing the size of the STOP sign may help call attention to the intersection.

Figure 5-4 | Snow Plow

Source: http://www.kolotv.com/home/headlines/Snow-Plow-Savings-303027391.htm/
Wet Road
High friction surface treatments are implemented when there is a particular
problem with vehicles having a hard time navigating a section of roadway during wet conditions. The high friction surface treatment is a pavement treatment that increases the friction in the area.

Figure 5-5 | High Friction Surface Treatment Typical Source: https://safety.fhwa.dot.gov/roadway_dept/pavement_friction/high_friction/

Source: https://safety,fhwa,dot.gov/provencountermeasures/fhwa sa 12 008.cfm

Passing / No Passing Zones also help to inform the driver of when it is safe to pass. These should be evaluated for correct sight distance length as over time this requirement has changed. Install a Passing Lane. On two lane roads, it has been found that installing passing lanes allows for people to safely pass other vehicles. This would be implemented as a spot treatment.

Overturn / Rollover

Overturn / Rollover crashes are common in rural areas. Reducing these crashes through a systemic approach is also the best way to reduce the number of injury and fatal overturn / rollover crashes.

Rumble Stripes are proven to reduce the number and severity of overturn /rollover crashes due to running off the road by providing a tactile and audio signal that the vehicle is departing the lane. CMF's for this countermeasure
indicate that there is the potential to reduce fatal crashes by up to 45.3%.
Adding a shoulder (including paving a shoulder) allows for a larger recovery zone. The base shoulder is 8 foot according to HSM. If the shoulder is lower than this the likelihood of having a crash increases. However, if you are going from no shoulder to a two foot shoulder, this will decrease the likelihood of having a crash but not by the same factor as when there is an eight foot shoulder.

Safety Edge is intended to be used to help errant vehicles recover and reenter the roadway. The treatment is generally low cost and has shown to reduce crashes by up to 7.7% for paved shoulders and 11.4% for unpaved shoulders.

Figure 5-7 | Safety Edge
Source: https://safety.fhwa.dot.gov/newsletter/safetycompass/2012/spring/
Figure 5-8 | Chevrons
Source: http://www.roadtrafficsigns.com/chevron-road-signs help to reduce the number of overturn / rollover crashes. Flattening side slopes allows for errant vehicles to recover and return to the travel way. The effectiveness of this treatment depends on the change in the slope.

5.5 LOCAL AREA STRATEGIES

Guardrail helps reduce the number of run off the road crashes which in turn may
Chevrons are used for horizontal curves. Currently, it is recommended that chevrons be put up where there is an advisory speed of 15 MPH below the posted speed limit or more.

[^6]Table 5-1 | Stakeholder/Practitioner Identified Strategies
Engineering \quad - Common Newspaper/Media Announcements for Community Events

$\begin{array}{ll}\text { Table 5-1 | Stakeholder/Practitioner Identified Strategies } & \bullet \quad \text { Common Newspaper/Media Announcements for Community Events } \\ \text { Engineering } & \bullet \\ \text { Investigate Organizations to Partner With: }\end{array}$ SNAPSA Uber/Lyft
DWI Program

Enforcement

- Jurisdictional Clarifications for Responding Officers
Enhanced Laws Related to Fatality/Injury Trends/Council Suppor Multiagency Collaboration - Coordination Beyond Divisions Collaboration to Achieve Reporting Efficiencies
Greater Visibility of Enforcement/Patrols in Communities
Enhance Community Relationships/Perceptions
Make Crash Reporting More Efficient/Effective/Easier Cross-Deputize Officers
Crash Data Sharing / Summary with Officers
Active Officer Participation in Courts
Animal Registration / Grazing Committee
Examine Local Chapter "Municipal Officers" to Augment Enforcement Develop Traffic Enforcement Division of Police Department

Emergency Medical Services

Road Block Program - Car Seat Check
Cross Training for Practitioners
Partnerships with Local Agencies/Schools/Businesses
Improve Response Time - Reduce Distances/Time
Improve Cell Service / Communication / "Firstnet" Safety Priorities
Improve Coordinated Dispatch
Improve Coordinated Dispatch
Develop Serious Incident/Mass
Develop Serious Incident/Mass Casualty Event Plan(s)
Traffic Control Certifications
Develop List of Certifications Available and Who Has Them
Develop List of Certified Trainers
Develop List of Resources/Equipment
Maps of Trauma Service Centers
6.0 COUNTERMEASURE INFORMATION

Topic	Countermeasure Name	Emphasis Area	CMF Ranges
Education	Mass Media Campaigns for Alcohol	Alcohol	proven
Education	Mass Media Campaigns for Speeding	Speeding	proven
Education	CarFit Program	Older Adults	proven
Education	Mass Media Campaigns for Seat Belt	Young Driver / All Drivers	proven
EMS	Alcohol Problem Assessment and Treatment	Alcohol Involved	proven
Enforcement	Publicized Sobriety Checkpoints	Alcohol / Drug Involved	proven
Enforcement	High Visibility Saturation Patrols	Alcohol/ Drug Involved	proven
Enforcement	Vehicle Plate Sanctions	Alcohol/Drug Involved	proven
Enforcement	Ignition Interiock	Alcohol Involved	proven
Enforcement	High Visibility Cell Phone / Text Messaging Enforcement	Distracted Driving	proven
Enforcement	Red Light Running Camera	Failure to Yield ROW	16\% to 46\%
Enforcement	Blue Light	Failure to Yield ROW	*NO Study
Enforcement	Speed Camera	Speeding	1\% to 39\%
Enforcement	Lower BAC Limits for Repeat Offenders	Alcohol Involved	proven
Enforcement	Zero-Tolerance Law Enforcement	Alcohol Involved	proven
Enforcement / EMS	Alcohol Screening and Brief Interventions	Alcohol Involved	proven
Enforcement / Engineering	Automated Speed Enforcement	Speeding	1\% to 39\%
Enforcement / Engineering	Mobile Speed Cameras	Speeding	1\% to 39\%
Enforcement / Engineering	Red Light Running Cameras	Intersection / Failure to Yield ROW	16\% to 46\%
Enforcement / Engineering	Blue Lights	Intersection/Failure to Yield ROW	*No Study
Engineering	Increase STOP Sign Size \& retroreflectivity	Intersection Crash / Failure to Yield ROW / Older Driver / Young Driver	7.60\%
Engineering	Install STOP Sign (double)	Intersection Crash / Failure to Yield ROW / Older Driver / Young Driver	55\%
Engineering	Install STOP Sign with Flashing STOP sign	Intersection Crash / Failure to Yield ROW / Older Driver / Young Driver	41.50\%
Engineering	Install Yield Sign	Intersection Crash / Failure to Yield ROW / Older Driver / Young Driver	*No Study
Engineering	Install Intersection Ahead	Intersection Crash / Failure to Yield ROW / Older Driver / Young Driver	27\%
Engineering	Add Post Delineator	Intersection Crash / Failure to Yield ROW / Older Driver / Young Driver	*NO Study
Engineering	Install Lighting	Intersection Crash / Older Driver / Young Driver	38\%
Engineering	Eliminate Skew Angle	Intersection Crash / Failure to Yield ROW	$f(x)$

Topic
Education
Education
Education

Enforcement
Enforcement
Enforcement
Enforcement
Enforcement
Enforcement
Enforcement
Engineering
Engineering
Engineering
Engineering
Engineering

Topic	Countermeasure Name	Emphasis Area	CMF Ranges
Engineering	Reduce Vertical Curves	Intersection Crash / Failure to Yield ROW	$f(x)$
Engineering	Install Roundabout	Intersection Crash / Failure to Yield ROW	48\%
Engineering	Install Wayfinding Signs	Roundabout Crash	1.60\%
Engineering	Increase Lettering Size on Signs	Older Driver	increase to standard size
Engineering	Edgeline Installation	Older Driver / Overturn / Rollover	45\%
Engineering	Centerline Striping	Older Driver / head-on	45\%
Engineering	Sidewalks	Pedestrian	*NO Study
Engineering	Crosswalks	Pedestrian	37\%
Engineering	HAWK Signals	Pedestrian	55\%
Engineering	RRFB	Pedestrian	47.40\%
Engineering	Chicanes	Speeding	*NO Study
Engineering	Road Diet	Speeding	5\% to 44\%
Engineering	Transverse Rumbles	Speeding / Intersection Crash / Failure to Yield ROW / Distracted Driving	*No Study on standalone transverse rumbles
Engineering	Changeable Speed Warning Systems	Speeding / Rollover / Overturn	46\%
Engineering	Dynamic Speed Feedback	Speeding / Rollover / Overturn	7\%
Engineering	Install Flashing Yellow Arrow	Intersection	14.30\%
Engineering	Change to Protected Only Left Turns	Intersection	1\%
Engineering	Winter Maintenance - Plowing	Snow	*No Study
Engineering	Winter Maintenance - Pretreatment	Snow	*No Study
Engineering	High Friction Surface Treatment	Wet	51.90\%
Engineering	Rumble Stripes	Overturn / Rollover / Wet	varies on shoulder width and road type
Engineering	Animal Under / Overpasses with Fencing	Animal	*shown to work in AZ
Engineering	Vegetation Restoration	Dust	*test site chosen in AZ
Engineering	Centerline Rumble Stripes	Head-On / Overturn / Rollover	4\% to 77\%
Engineering	Passing / No Passing Zone	Head-On	update to be standard
Engineering	Passing Lane	Head-On	9\% to 47\%
Engineering	Shoulder	Run-Off The Road / Rollover / Overturn	*varies by shoulder width
Engineering	Safety Edge	Run-Off The Road / Rollover / Overturn	"varies by shoulder type but could be 15.5\%
Engineering	Paving Shoulders	Run-Off The Road / Rollover / Overturn	$f(x)$
Engineering	Chevrons	Run-Off The Road / Rollover / Overturn	4\% to 64\%
Engineering	Curve Warning Signs with chevrons	Run-Off The Road / Rollover / Overturn	23.6\% to 53.6\%
Engineering	Guardrail	Run-Off The Road / Rollover / Overturn / Snow	2\% to 58\%
Engineering	Flatten Side slopes	Run-Off The Road / Rollover / Overturn	in HSM, f(x)

STRATEGIC HIGHWAY SAFETY PLAN
Appendix D - Kayenta Presentation and Crash Summaries
STRATEGIC HIGHWAY SAFETY PLAN
Appendix F - Ganado Presentation and Crash Summaries

*** FOR NNDOJ USE ONLY - DO NOT CHANGE OR REVISE FORM. VARIATIONS OF THIS FORM WILL NOT BE ACCEPTED. ***

NNDOJ/DRRF-July 2013

MEMORANDUM

TO : \quad| Veronica Blackhat, Assistant Attorney General |
| :--- |
| |
| |
| Department of Justice |

FROM : $\xlongequal[\begin{array}{l}\text { Norma Bowman, Program Manager } \\ \text { Navajo Department of Highway Safety/NDOT }\end{array}]{\text { Socm }}$

DATE : June 25, 2018
SUBJECT : LEGAL REVIEW
Re: Strategic Highway Safety Plan
Attached is the request for services to review the Strategic Highway Safety Plan (SHSP). We have prepared the Plan and is now ready for Resources and Development Committee Approval.

The Plan is designed to:

* Provides an Understanding of Highway Safety Within a Defined Area.
: Evaluates Existing Trends and Processes.
* Facilitates a way for Practitioners to Become Informed and Involved.
* Defines a Vision/Goals/Objectives to Improve Highway Safety.
* Identifies Opportunities for Highway Safety Improvement.
* Outlines Strategies to Address Opportunities.
* Defines Roles and Responsibilities to Address Strategies

The SHSP is a supplemental tool to the Long Range Transportation Plan under the Safety Section. Most federal agencies are requiring the SHSP to support funding applications for safety projects.

Your review of this Plan is greatly appreciated. If you have any questions, please contact me directly at (505)371-8391. Thank you.

MEMORANDUM

TO : \quad| Mariana Kahn, Aftorney |
| :--- |
| Legislative Counsel |

FROM :
Norma Bowman, Program Manager
Navajo Department of Highway Safety/NDOT
DATE : August 1, 2018
SUBJECT : LEGISLATION
Re: Strategic Highway Safety Plan
Attached is the Strategic Highway Safety Plan (SHSP) which has been reviewed by Department of Justice, V. Blackhat (all corrections have been made).

The next step is not prepare legislation for Resources and Development Committee Approval. I have been in contact with Alton Joe Shepherd, Chairman of the Committee who will serve as Sponsor of this legislation.

Your processing of this Legislation is greatly appreciated. If you have any questions, please contact me directly at (505)371-8391. Thank you.

RESOURCES AND DEVELOPMENT COMIMTTEE
 Regular Meeting - November 28, 2018

ROLL CALL

VOTE TALLY SHEET:

Legislation \# 0369-18: An Action Relating to Resources and Development; Approving the Navajo Division of Transportation 2018 Strategic Highway Safety Plan Sponsor: Honorable Alton Joe Shepherd.

MAIN MOTION: Walter Phelps S : Davis Filfred V: 5-0-1 (VCNV) YEAS: Alton Joe Shepherd, Davis Filfred, Walter Phelps, Leonard Pete and Jonathan Perry NAYS: None EXCUSED: None

Honorable Benjamin Bennett
Presiding Vice-Chairman
Resources and Development Committee

Shammie Begay, Legislative Advisor Office of Legislative Services

[^0]: Crashes were then selected by fatal and injury crashes only, resulting in 7,527 crashes. With that extraction, a crash density analysis was performed to identify if there were any areas of crash concentrations. Of the fatal and injury crashes, 43%
 are within these seven specific geographic areas and representing only 4.1% of the road network.

[^1]: EDUCATION

 - Educate drivers of the hazards of driving impaired (alcohol, drug, sleep).
 - Run media campaigns on blind spots.

 ENFORCEMENT

 - Enforce restrictions

[^2]: - Enforce unsafe speeds during winter weather.

[^3]: At unsignalized intersections there are many low cost solutions. These include increasing STOP sign size; adding post delineators; and adding STOP bars. Higher cost solutions include installing lighting, eliminating any skew angle, and reducing vertical curves.

[^4]: Road Diets reduce the total number of lanes and includes a Two-Way Left-Turn Lane. It provides room for bike lanes / parking / sidewalks.

[^5]: Centerline Rumbles are typically used when there are many head-on crashes or run off the road left crashes.

 > SNOW ON ROAD

 Winter maintenance is the main way to help reduce the number of crashes resulting from snow on the roadway. Winter maintenance includes pretreating roadways and increasing the number of plows.

[^6]: Table 5-1 outlines the strategies identified in the local meetings by the practitioners that participated in the Safety Plan meetings. These strategies are currently being used, or were viewed as desired in the regions where meetings were held.

